Sullivan Branch Stream Restoration

Urbanization of Chesapeake Bay watershed has resulted in

- Increase in impervious surface
- Excess erosion
- Sediment plumes
- Stream degradation
- Disconnected floodplains

Increased development changes the hydrology; natural channels essentially unravel...

Problems

- Bed erosion
- Bank erosion
- Tree loss
- Channel incision
- Disconnected floodplains

- Water Quality degradation
- Sediment loads
- Undermining of outfall structures

Low impact development (LID) strategies offer hope for the future

- Stormwater management strategy
 - Includes land planning and engineering design to mimic predevelopment hydrology
- Goal of LID
 - Infiltrate, store, filter and evaporate runoff
 - Manage stormwater at the surface
 - Protect streams and natural resources
- LID strategies
 - Bioswales
 - Bioretention (raingardens)
 - Infiltration facilties
 - Functional landscapes

Low impact design can

reduce impacts of future

development

and redevelopment

Prince Frederick County, Maryland **SULLIVAN BRANCH**

A stream suffering from the effects of increased urbanization

creating a sustainable world

Sullivan Branch

- Coastal plain
- Restoration at headwaters
- West Chesapeake area sub-basin
- 15 acre drainage area
- 62% imperviousness

Sullivan Branch Problems

- Failing/undersized outfalls
- Bank erosion
- Severe channel incision
- Sediment settling in wetland of Special State Concern
- Falling trees

Geomorphic Assessment

Three distinct reaches

Reach 1

- Laterally and vertically unstable
- Unable to access floodplain
- Steep slope
- Severe erosion
- Intermittent flow

Reach 2

- Moderately unstable
- Decrease in bank height
- Decrease in slope
- Transitional reach

Reach 3

- Vertically and laterally stable
- Dimensions consistent with regional curve
- Access to floodplain
- Reference reach

Design Goals

- Reduce sediment/ bank erosion
- Allow access to floodplain
- Increase channel stability
- Stabilize outfalls
- Reduce tree impacts

Design Options

- 1. Grade back existing banks
 - Significant tree impacts
- 2. Raise channel invert
 - Large amount of fill
 - Sandy soils compromise stability
- 3. Combine stormwater mgmt. with natural channel design
 - -Agency approval

3rd Option

Stormwater Management Practices

- Fill and re-vegetate tributaries
- Pipe upland runoff
- Create forebay to dissipate energy and improve water quality

Natural Channel Design

- Stream flows from forebay
- Grade back banks
- Create bankfull and 2-year floodplain benches

Natural Channel Design

- Create meander geometry based on reference reach
- Keeping a majority of the restored channel within the existing channel to decrease tree impacts

Bio-Engineering

- Re-vegetate with native vegetation (including Bald Cypress)
- Coir fiber rolls along meander bends
- Woven coir mattress
- Live stake installation

Structures

- Rock cross vanes
- Step pools
- J-hook vanes

Address localized erosion

- Bank erosion at meander bends downstream of grading
- Rock cross vanes & J-hook vanes installed to convey flow away from eroding banks

Stabilize Tributary 5

- Receives drainage from SHA parking lot
- Replace failing riprap
- Create plunge pool

Project Specifics

- December 2005: Initiation of geomorphic assessment
- April 2007: Plans finalized
- January -February 2009: Stream construction
- 2009-2014: Post construction monitoring
- Construction cost: \$200,000

Lessons Learned

- Agency coordination early on
- Develop design based on unique site conditions
- Integration of several approaches necessary for success
- Minimizing tree impacts important aspect in design

Questions?

